Arginine analogues incorporating carboxylate bioisosteric functions are micromolar inhibitors of human recombinant DDAH-1.
نویسندگان
چکیده
Dimethylarginine dimethylaminohydrolase (DDAH) is a key enzyme involved in the metabolism of asymmetric dimethylarginine (ADMA) and N-monomethyl arginine (NMMA), which are endogenous inhibitors of the nitric oxide synthase (NOS) family of enzymes. Two isoforms of DDAH have been identified in humans, DDAH-1 and DDAH-2. DDAH-1 inhibition represents a promising strategy to limit the overproduction of NO in pathological states without affecting the homeostatic role of this important messenger molecule. Here we describe the design and synthesis of 12 novel DDAH-1 inhibitors and report their derived kinetic parameters, IC50 and Ki. Arginine analogue 10a, characterized by an acylsulfonamide isosteric replacement of the carboxylate, showed a 13-fold greater inhibitory potential relative to the known DDAH-1 inhibitor, L-257. Compound 10a was utilized to study the putative binding interactions of human DDAH-1 inhibition using molecular dynamics simulations. The latter suggests that several stabilizing interactions occur in the DDAH-1 active-site, providing structural insights for the enhanced inhibitory potential demonstrated by in vitro inhibition studies.
منابع مشابه
Dimethylarginine dimethylaminohydrolase and endothelial dysfunction in failing hearts.
Congestive heart failure (CHF) is associated with impaired endothelium-dependent nitric oxide (NO)-mediated vasodilation (endothelial dysfunction). We hypothesized that coronary endothelial dysfunction in CHF may be due in part to decreased dimethylarginine dimethylaminohydrolase (DDAH), the enzyme that degrades endogenous inhibitors of NO synthase (NOS), including asymmetric dimethylarginine. ...
متن کاملInhibitors of the Hydrolytic Enzyme Dimethylarginine Dimethylaminohydrolase (DDAH): Discovery, Synthesis and Development.
Dimethylarginine dimethylaminohydrolase (DDAH) is a highly conserved hydrolytic enzyme found in numerous species, including bacteria, rodents, and humans. In humans, the DDAH-1 isoform is known to metabolize endogenous asymmetric dimethylarginine (ADMA) and monomethyl arginine (l-NMMA), with ADMA proposed to be a putative marker of cardiovascular disease. Current literature reports identify the...
متن کاملDimethylarginine Dimethylaminohydrolase-1 Transgenic Mice Are Not Protected from Ischemic Stroke
BACKGROUND Methylated arginines are endogenous analogues of L-arginine, the substrate for nitric oxide (NO) synthase. Asymmetric dimethylarginine (ADMA) interferes with NO formation, causing endothelial dysfunction. ADMA is a predictor of cardiovascular events and mortality in humans. It is eliminated primarily by enzymatic activity of dimethylarginine dimethylaminohydrolase (DDAH). METHODOLO...
متن کاملDimethylarginine dimethylaminohydrolase (DDAH) regulates trophoblast invasion and motility through effects on nitric oxide.
BACKGROUND Invasion of trophoblast into the uterine environment is crucial for establishing a successful pregnancy. Physiological production of nitric oxide (NO) by extravillous trophoblasts results in significant pro-invasive effects. NO synthesis is competitively inhibited by methylated arginine analogues such as asymmetric dimethylarginine (ADMA) but not the enantiomer symmetric dimethylargi...
متن کاملS-nitrosylation of dimethylarginine dimethylaminohydrolase regulates enzyme activity: further interactions between nitric oxide synthase and dimethylarginine dimethylaminohydrolase.
The enzyme dimethylarginine dimethylaminohydrolase (DDAH) hydrolyses asymmetrically methylated arginine residues that are endogenously produced inhibitors of nitric oxide synthases (NOS). We and others have proposed that DDAH activity is a key determinant of intracellular methylarginine concentrations and that factors that regulate the activity of DDAH may modulate nitric oxide (NO) production ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 13 46 شماره
صفحات -
تاریخ انتشار 2015